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ABSTRACT

The feasibility study of using a single three-gimbaled control
moment gyro is made for fine control of experinmental modules attached

to an orbital spacecraft.

The suboptimal control laws are derived for the simplified equations,
and these control laws performed very well for the original equations.

These laws are feedback control laws.

Three optimization problems are considered for the system. These
are minimum time control, minimum energy control, and minimization of

both time and energy with a weighting factor.
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I INTRODUCTION AND SUMMARY

A, Introduction

This report is concerned with the feasibility of using a single
three-gimbaled control moment gyro for fine control of experimental

modules attached to an orbital spacecraft.

The prototype space vehicle considered by NASA consists primarily
of an orbital workshop, a command service module, and several experi-
mental modules., A system of three double-gimbaled control moment gyros
(CMG's) is designed to control the attitude of the orbital workshop.l*
Since the orbital workshop and the other modules are not rigidly con-
nected, the other modules can be considered as masses connected by

springs; it is thus improbable that the present CMG system can provide

accurate attitude control for the attached modules.

Additional control of the experimental modules could be provided

by a single three-gimbaled CMG.

Control moment gyros have many attractive advantages~-among them
high accuracy and sufficiently low power requirements that the gyro can
be operated from energy supplied by solar panels or from fuel cells.
Further, since CMG's do not produce gases around the space vehicle, they
do not interfere with optical experiments. These advantages indicate
that CMG's are the logical choice for the next generation of attitude

controllers for space vehicles and experimental modules.

*
References are listed at the end of the report.




B. Summary

A theoretical study has been made for a single three-gimbaled con-
trol moment gyro, Three optimization problems, namely, minimum time,
minimum energy, and the minimization of both time and energy with a

weighting factor, are considered.

In order to obtain a feasible feedback control law, the equations
of motion are simplified., The suboptimal control derived for the sim-

plified equations performed very well for the original equations.

The outer gimbal is designed for controlling the disturbances about
the Z-axis. However, the analysis shows that a significant improvement
in the outer gimbal configurations is required in order to use the outer
gimbal for controlling the disturbances about the Z-axis. It is im~
portant to note that the outer gimbal in the present form permits a

wider range of X and Y axis control,

It is found that the optimal control law that minimizes both time
and energy with a weighting factor can be constructed by adding a dead
zone to the time-optimal switching curves. The width of the dead band

is a function of the weighting factor.




II CONTROL MOMENT GYRO SYSTEM

In order to find the optimal control law, the total system is
divided into two parts, namely, the controlled part (platform) and the

control element (CMG), indicated schematically below:

M B
X X
M=|M 8% =18
y y
M S
Z z
Torque applied 1
to platform — — g — —8 Angle deviation
S

Controlled Part (Platform)

0 T
1 1
6 =16 T=1T
2 2
0 T
3 3
Gimbal angle — Nonlinear ——4p Generated torque

Control Element (CMG)

The values of T and M are related as follows:

T M

—e A(®) &




The three optimization problems, namely, time optimal, minimum
energy, and the minimization of the combination of energy and time, are
considered in this report. General comments for the three problems are

given below.

Time-Optimal Control--The time-optimal-~control law is found by

considering only the controlled part:

M g*

1
A ) -
S

Control Law ]

Once the time-optimal-control law M(8%*) is determined, the unique solu-
tion B (B*) from the equation describing the control element is also

determined.

Minimum-Energy Control--If the problem is defined as that of mini-

mizing the energy consumption without having any limitation in time,
then the solution is trivial., The answer is to use almost no energy

and to consume infinite time.

Minimization of the Combination of Energy and Time--The main problem

in this research is to find the control law that minimizes the combina-
tion of energy consumption and time with a weighting factor. The non-
linearity in the equation of motion of a CMG causes the difficulty in
finding the feedback optimal control law. When the implementation of
the solution is considered, it is better to have a feedback control law
for a simplified model than a time-dependent solution for the original
equation with a high degree of nonlinearity. The simplification of the

equation is discussed in Section III.



III MATHEMATICAL MODEL OF CMG

Preliminary Remarks

It is necessary to define the torques, angular velocities, and

angular momentum before describing the equation of motion.

Ifn, (i =1, 2, 3) is a right-handed set of mutually perpendicular
—i

principal directions of a rigid body R for the mass center P* of R, and
, =

R
if these unit vectors are fixed in R, then the torque T of the inertia

. . o . 2
couple acting on R in a reference frame R 1is given by

r / B
R R
/ d w / ’
R R 1 R RR R
T = - |1 —(1—1) W' w | n
— 1 dt 2 3 2 311
- -
i R’ R B
d w / ’
2 R  RR R
- —(1—1) w w. |n
2 dt 3 1 3 112
r— R/R g
d w ’ ’
3 R RR R
- |1 —(1—1) w' " w |n , (1)
3 dt 1 2 1 2 13
R' R - .
where W is the n, measure number of the angular velocity of R in R’
i =

and I is the principal moment of inertia of R for PX.
i ol

Define the moment of inertia of three gimbals--namely, inner,

middle, and outer--as follows:

I_. 0 0
1i
[I]i = 0 121 0 5 i=1, 2, 3
0 0 I .
3i




The first subscripts indicate the axes (x, y, z) and the second sub-
scripts indicate the reference frames (inner gimbal, middle gimbal,

*
outer gimbal),

Define the angular velocities of those gimbals and their time de-

rivatives with respect to the main body as

w w
1i 13
(D = i = d-) i = ]_ 2 3
{ }i wZi B {w}i 24 5 1 y 4y »
© .
3i 3i

and also define the matrix [W] as
i

0 -W w
3i 21
w = w 0 -~ i =1 2 3 .
[}1 3i 1i ? >
- w 0
21 1i

Then the torque {T}‘ of the inertia couple acting on a gimbal i in a
i

reference frame B, main body [refer to Eq. (1)], is described as
B i . .
(), = "7 =~ {8} - (o, 1o, {w ,oi=1,2,3 . (@)
i - i i i i

The angular momentum H of the rotor relative to the mass center in

B is expressed as

_}g:iw n + I

. -
1011 21 o Yoo Byt

sk
Refer to Figure 1.
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FIGURE 1 SKETCH OF CMG
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where 1  is the principal moment of inertia of the rotor for the mass

i
center, ® is the angular velocity of the rotor with respect to the inner
1} _132)
dicular unit vectors fixed in the inner gimbal, 1In this case, a rigid

gimbal, and as previously defined n and 33 are mutually perpen-
body R corresponds to the inner gimbal. The sum of the moments about
the mass center of the rotor of all gravitational and contact forces

acting on the rotor is related to the angular momentum H as follows:

n
-1 —2 -3
+ | w w w
11 21 31
T W T i (m )
I %1 2 22 3\ %33 *
T I w W i w W &)
Il 11 2 31 22 + 3 21( 33 +
={¢7 + T -1 w (w + m) .
2 22 1 31 11 3 11\ 33

G w _H
1 21
G=/¢G ={-w_ _ H 3
- 2 11 ? )
G 0
3 1
1

where H = T_ ©,




Let us define the coordinate transformation matrices as follows:

(1) Rotation 93 about ZS axis

X X
3 B
= [A
y3 [ ]3 yB p)
z Z
3 B
where
cos § sin O 0
3 3
[A]3 = | -sin 93 cos 93 0 5
0 0 1

(2) Rotation 62 about y2 axis

2 3
= [A
Yo (AT, 473 )
z z
2 3
where
cos 9 0 -sin ©
2 Y,
(a1, =| o0 1 0 ,
sin 62 0 cos 92




(3) Rotation 61 about Xl axis

X X
1 2
= [A
yl [ }1 y2 p)
%1 %y
where
1 0 0
A =10 i
[ ]l cos 61 sin 81
0 -sin © cos O
1 1
B. Equations of Motion

The equation of motion of the inner gimbal is described as

1 1
G + T =0 . 4
M21 * 2 { }l 4
M
31 GS
1

The first term represents the torque acting on the inner gimbal, the
second term represents the precession torque, and the third term repre-
sents the torque of thé inertia couple acting on the inner gimbal.

Similarly, equations for the middle and outer gimbals are expressed as

M T

12 1

T - [A]T M +{r} =o0 )
2 1 21 2 ?

M

32 31

10




13 12
T
M - [A T + {T =0 . 6
0a [Al,q T, {}3 6)
T
3 32

Substituting Eq. (2) into Egs. (4), (5), and (6) yields

T G
1 1
M = -4G + [I Oy 4 [w I w
o1 lz []1{}1 []l[]l{}l )
M G
31 3
1
M T
12 1
T .
T = [A M + [ w + W 1 w
) (A1 My [12{}2 [12[12{}2 ,
M M
32 31
and
M
13 12
T .
M = [A T + [I [t + LW I w
- [A1,Q T, []3{}3 []3[]3{}3
T M
3 32
Hence, we have
T W H ) _(1 -1>w W
1 21 11 11 21 31 21 31
v uy+ T (7)
21 11 21 21 31 11 31 11
M 0 1 d>-( -I)mw
31 31 31 11 21 11 21

11




12

32

cos B
2
0
-sin 6
2
I W)
11 11
X1 )
21 21
1 @
31 31
cos om
0
-sin 6
T
)
wa 13
I W
23 23
I &
33 33

-sin © I o -

AH -1 V w_ W
1) 21 21 31 11/ 31 11 11

cos © ,.H o -

0

0

(8)
sin 8 1 0 0
2
0 0 ~sin
cos oH si ®H
cos om 0 sin ®H cos @H
AH - I v w w - w H
21 31/ 21 31 21
- I v w w + W H
31 117 31 11 11
|AH 1Hvee
11 21/ 11 21
: W - - v w w
sin 8,1(1)5 9y AHNN T3] Yon %30
0 I b - AH - I ) w
22 22 32 12/ 32 712
1 b - AH -1 woow
cos 8,132 ¥30 11 va 12 22
(-1 ) e
A 23 33/ 23 33
) 9)

12




The elements of

as follows:

{w13

®

i

w et w =
23 { }3 -

N
154 IS
DO =
Do N
\__’\/—-—/
[l
[
€
e
N
Il
[ os]
DN
i

w
11 B 1
j o w = =
UU21 { }l -
W
31
o
( 13 Bd Bw
{ = {®l = =
w23 { }3 dt
o
33

{w} anda {0}

1 dt

Gl—essinez—egezcosez

il

are expressed in terms of 6 and 6
i i

-8 sin 6
62 5
6 _ cos 62

é - 63 sin 92
8 _  cos 91 + 63 sin el cos 62

—é sin 61 + éS cos 91 cos 62

9 ~ 63 62 cos 92

S éz sin 6

6200581—626151n61+6351n6100862—63(6251n6151n62—61coselcoseﬁ

-8 sinb —é é cosb +B cosB cosd -6 (é sinb_ cosB +é cosH_sinb )
2 1 2 1 1 3 1 2 3\v1 1 2 2 1 2

Substituting these values into Egs. (7), (8), and (9) results in the

following:

13




L= Ill(el - §,sin0,, - 938200862)

. . \ . N
~(I21 - 131)(6200591 +»6381n9100582)(—9281n61 + Gscoselcosez)

—H(ézcose1 + éSSinelcosez) ‘ (10)

6 cosel - 926181n61 + 9381nelcose2

T = I
2 Cosel[ 2112

0
63(6251n6151n62 Glcoselcosez/$

—(131 - Ill)(—ézsinel + éscoselcosez)(él - égsinez)
+(él - éssinez)H]
—Sin61[131§-é2Sinel - ézélcosel + égcoselcos62
—é3<élsinelcosez + ézcoselsinez)f
-(Ill - 121)(é1 - éssinez)(ézcosel + éssinelcosez)]

+12252 + (132 - 112)(é3)2cos92s1n92 (11)

14



6. - 9351n62 - 639200592)s1n62
+(121 - 131><®200561 + 630056281n61><—9251n61 + Gscoselcosez>sin82
+<62c056l + GSSinelcosez) . Hsin62

+I sé cosb - 6 b sind + 6 sind® cosh
21072 1 271 1 3 1 2

A dd e . . ).
63(9251n6151n62 61c059100562>‘51n61c0562

(131 - Ill)<—9251n61 + choselcosez)(el - 6351n62}51n61c0562
+(el - 9351n62)H51n61c0592
{ o .. .
-8 -
+1311 251n81 626100561 + 93c0591c0562

C ol : _ 1
- B
63(9151n lcose2 + 62c056151n62) cos@lc0592
_ _ {. —. i )-- . A
(Ill 121>\61 6351n92 (9200561 + 6351n6100592>
—112<—9351n82 - 6392c0592>51n62

+(122 - 132)629351n62c0592 + 132(9300362 - 936251n92>c0562

) _ L. . . )
(122 112)629351n6200582 + 1_.8 (12)

33 3

If sin 8. ~ 6 and cos 6, =~ 1 (i = 1, 2), then the equations de-
i i i

scribed above will be simplified as follows:

15




= I11(61 - é.392 B éséz) - (121 B I31)(éz + éSGl)(_é291 * és)
-H(é2 + ésel) , (13)

Y . g »
I21262 929191 + 9391 93(626192 el)}

—(131 B I11)('é291 * éS)(él - ésez) + H(él - ésez)

(o . . . . e ) ;
I31ell 0,8, ~ 958, + 95 - 93(9191 + e262)

'(111 B I21)(é1 B ésez)(éz * é391>
. .2
8, T <132 - I12)6392 ’ (14)
Ty = _Ill(él - 5392 - é3é2>92
+(121 - I31)(é2 +’é361)("é291 * é3)92 + Hez(é2 * ésel)

(0 a e . N o %
+I2191192 e29161 * e391 93(629192 el)

-(1,, - 111)91(—é291 + és)(é1 - éSez) + Hel(él - égez)

;_.. A T . R t
18,0, - 8,6, + 8, 93(9161 + 9292)

—<Ill - I21)(é1 B é392>(é2 + é391> N I12<—é362 - é3é2)92

+(I -1 32(é3 B ésézez)

22 32)629362 1

"(122 - I12)626392 * I3393 ) (15)

16




The data given by NASA are H = 1000 ft-lb-second,

1 0 0 [1 0 o
2 2
1 =0 1 o] slg-ftt , I, =]0 4 0| slg-ft° , and
0 0 1 0 0 4
-
10 0 O
I,=| 0 6 0| sle-tft
0O 0 8
Hence, if I =1I__ =1I__ and I _ = kI __ = kI (k < 1), then the three
11 21 31 12 22 32

equations will become
T = I11<91‘9392‘eez> —H(62+9391> , (16)
. 2 .. 2 -2
T = 1 1 -
) 111{92< + 91) + 9391( + 91) 6362}
v1 (6 +6% ) +ulé 6.0 7
22\"2 3°2 ( 1 73 2> ?
. - 2 2 o 2 e 2
T = - - 1 1
5 111{6162 93( +el 92) + 9192( + 91> + 92939192§
+1 {6 {1+ k62) 2(1 - k)6 6.6
22]73 2]~ - 27372
+1,8, H(elel + 9292> . (18)

Equation (16) can be written as

17




By using the values given by NASA for I11 and H, we have

: )

8,8,) - 10 3. (é2 + é391>5 .

Tl = H{(Gl - 9392 -

Therefore, if the magnitudes of Ill and 122 are much smaller than the

magnitude of H, and if Gl, S and 63, and their derivatives are small,

2)
then the equations will be simplified as follows:

T=—H(é + 0 )
1 2 361 ’

T:H(é Sy ) 19

5 1 ‘6362 P (19)

_ . 5. . )

T,= 18, + H(elel 8.6, ,
where I = Ill + 122 + 133. This is a simplified equation for the control
element. If the approximation given by Eq. (3) is not acceptable and G3

t be T 6 _, then I should be equal to I._ + I__+ I__ + T_ in Eq. (19).

mus e 363, en ou q 11 29 33 3 i q. (19)

The equation of motion of the controlled part (platform) is described

as

I 6 =M

X X X

I 8§ =M

y vy y

I 6 =M ,
zZ Z A

and using the relationship between M and T yields

18




bt
[enld
Il

T 0os 8 ~ T sin B
1 € 3 g SH V3

X X
Iy éy = T2 cos 93 + T1 sin 63 (20)
I 6 =7 .

z oz 3

The values of I , I , and I are given by NASA as 40,000, 40,000, and
X"y z

20,000 slug-ft , respectively.

Although Egs. (19) and (20) still have nonlinear terms, they are

much easier to handle than the original one.

-

Let us introduce the state variables x = [Xl, Xz, ey Xlo] and
the control value ET = [ul, U, ug] as follows:
X = GX Xy = 62 u, = 91
X2 = GX x7 = el u2 = éz
X, = Gy Xy = 82 u, = 63 .
X, = ey Xg = 63
x_ =6 X =9

Using these new variables, we can write Egs. (19) and (20) as

T = ~H<u + X X >
1 2 7 *10
T = H( - ) 21
2 Y17 %8 *10 1)
T,o= T ou, + 0 + )
3 Uy g Yo T R Yy

19




o]
]
ol

1 2

. 1
= - |IT os - T i
X, T [lc Xg 251n Xg]
x
X =X
3 4
. 1 .
Xx =—|T cos x + T sin x
4 I [ 2 9 1 ‘ 9}
y
X =X
5 6
22
. 1 (22)
X =—T
6 I 3
z
X =u
7 1
X =u
8 2
*9 T 10
=1
*10 7 Y3
Substituting Eq. (21) for Eq. (22) results in the following:
X = X
1 2
. H . . H
X = - —|x X cos X - X X sin x -~ = sin x Ju. - |— cos x_}Ju
2 1 7 10 9 8 10 9] I 9] 1 I 9
X X x
X =X
3 4
. H N ) N H
= - — sin — cos u - {— sin x Ju
%4 1 [f8%10 ©9° ¥ T ¥7%0 71 x9] I 9" T\ 1 o2
y y
X = X
5 6
23
. U (23)
X =— X Uu +—xu -+ —u
6 71 I 8 2 3
z z z
X = u
7 1
X =1
8 2
*9 T *10
10~ Y3

20




C. Cost Function

The next subject of discussion is the cost function, which is the
sum of the power consumption and time, with a weighting parameter; it

is expressed as

t
' !
= 6. | + |18 T.6 k! dt . 24
N BN ECA R AN EE N @
t
o
Although Tl’ T2, and T3 satisfy Eqs. (19) after some approximations, we

will approximate them further as follows:

= -HE
Tl e2
T = HO
2 el
T :—Ié .
3 3 3

Then the cost function described by Eq. (24) will become

t
1
= 2 JHuu_ | + |1 u_ | + k| dt . 25
J [l LN ] (25)
t
o
The approximation above is well justified for small values of 61, 62,
93, and their derivatives.,

21







IV OPTIMIZATION

A, Simplification

One of the objectives of this research is to find the optimum con-
trol laws for ul, u2, and u_ that will drive disturbances to the
stationary position in minimum time, During the course of this research
(as described in Section IV-C), it was found that the outer gimbal cannot
successfully be used as a torque generator, The outer gimbal is simply
used for eliminating the z-axis torque produced by the inner and middle
gimbal movements while controlling the GX, ey disturbances, In other

words, u_ is chosen so as to make kG zero. From Egs. (23), u3 can be

expressed as
x u + x_u ) . 26
(., , (26)

With this choice of us, the optimum control laws for ul and u,, are de-

rived. Let

H
€. =X X_cos X - X_ sin X - 5
1 10 7 9 8 91 1
X
. H
e =X X €0S X -+ X_ sin x —_— B
2 10 8 9 7 9] 1
y (27)
. H
W. = |u, sin x_ + u_  cos X - B
1 1 9 2 91 1
X
. H
W = |-u cos x + u_ sin x —_—
2 1 9 2 91 I

y

Then Egs. (23) will become,
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Before further analysis, let us review the maximum principle of

Pontryagin.

B. Application of Maximum Principle

Let us consider the time-optimal control of the system described
by Egs. (28). If there is no bound for ul and uz, there is no solution,
Hence u1 and u2 are considered to be bounded and are described as

lu | =o

1\
(29)

|u2| s o .

The optimal control problem is defined as follows: The system is
described by Egs. (28) and (29). The objective is to determine control

laws ul(t) and uz(t), which drive Xy Xy X and X, to zero at the

3}

final time and which minimize the function
J. = 1 dt (30)

along the solution.

T
Introducing the four-dimensional adjoint vector A = (xl,xz,xs,x4)

and the function
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4
Koy, x, w = Z ;M"‘i ) (31)
i=1

we have the equations

.o o 39

xi—ay\‘ ’ (32)
i

o ;

ki - 0% ) (33)
i

For fixed values of ) and X, H is a function of u. 'We denote the upper

bound of the values of this function by M(Q., x):

MO, x) = Sup HQ\, x, u) . (34)
uelU

Maximum Principle®--Let u(t), t = t = tl be an admissible control
- o]

that transfers the state point from x to X1 and let x(t) be the corre-
2o z =

sponding trajectory, so that X(to) =X , X(tl) = Xl. In order that u(t)
2 250 2 s =

and x be time-optimal, it is necessary that there exist a nonzero, con-
T
tinuous vector function ) (t) = [xl(t), xz(t), kB(t), A4(t)] corresponding

to E*(t) and z*(t) such that

(1) For all t, t =t = t the function H[A(t), x(t), ul
o A i ood
of the variable ueU attains its maximum at the point

u = u*(t):
HIA(E), x* (1), u¥(t)] = M(, x) ) (35)

(2) At the terminal time tl’ the relation

M[A(tl), §(tl)] > 0 (36)

is satisfied.
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Furthermore, it turns out that if )\(t), x(t), and u(t) satisfy system
(32), (33), and condition (1), the time function M[A(t), x(f)] is con-
stant, Thus Egq. (36) may be verified at any time t, to st = tl’ and

not just at tl.

C. Minimum Time Control

Let us apply the maximum principle to the problem described by re-
lations (28), (29), and (30), Variables € and €, are considered to be
constant during the process of finding an optimal control law. Once
the optimal control is found, el and 62 are considered to be variables
as defined by Eqs. (27). This type of approach is used frequently. The
representative example is the Kryloff-Bogoliuboff method in nonlinear

. 4
mechanics.

If €1 and €_ are treated as constants, then Eqs. (28) are decoupled.
The optimal control laws for W1 are obtained by using the maximum

principle of Pontryagin as follows.

The Hamiltonian function ¥ for a set of equations

is deSCI‘ibed as

12

The adjoint variables xl and xz satisfy the differential equations
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Kl Y 0 ’
1
o= -2
2 ox 1
2

W= %— sgn (—kz) = @& sgn (—kz) (37)

and Wi has at most one switch. The construction of a switching curve in
the xl—x2 plane is done by analyzing the backward trajectories starting

from the origin.

Let 7T = tf - t and d/dt = ( )/; then we have

X, = -X
1 2
/
X = € + W s
2 1 1
where T is constant, If Wl = i&, then x2 and Xl are given by
X = (6 + a)T
2 1
— 2
e, t X
1 T2 2
X = - = = .
1 2 2(&?@)
1
Hence, we have
x,|x, |
W1 = o sgn | x, + (38)

1 20 - € sgn X
1 1
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Similarly,

X X
w* = @ sgn + 4‘ 4! (39)
= X .
2 & 3 20 - 62 sgn x3

By substituting W; and W; into Egs. (27), we find the optimal control

laws u¥ and u* to be
1 2

%, |x. |
* . 2" 2
u® = ¢ sin x_ -+ sgn |x_  + —=
1 9 1 200 - €. sgn X
1 1
X |x I
o + 4 4 (40)
- cOSs X_ * Sgn =
9 8% %3 T 2w - sgn x ’
2 3
x |x |
* . 4' 4
ut = ¢ sin x_ - sgn |x_+ ==
2 9 3 20 - €_ sgn x
2 3
x,|x, |
+a cos xg ¢ sgn |x + == . (41)

20 - €. sgn x
1 "8

It should be noted that these optimal control laws are not designed for
driving gimbal angles to zero when the disturbances of the space vehicle

are controlled to the desired position.

At the early part of this section, it is mentioned that the outer

gimbal is not a good torque generator., Let us examine this fact further.

The optimal control law for the outer gimbal is not successfully
obtained. This is due to the fact that the torque produced by rotating
the outer gimbal is not sufficiently large to control the disturbances
about the z axis. The present device can control the disturbances about
the z axis but it takes an unreasonable length of time. One way to make
the present system workable is to increase the moment of inertia of the
outer gimbal, This may not be acceptable for many reasons. The restric-

tions on physical sizes and weights are two of these reasons., It is
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hence necessary to add an additional torque generator in order to con-
trol the z-axis disturbances properly. It should be pointed out that
the present outer gimbal has its own function, which is expressed in
Egs. (23) and (26). Assume ul = u = 0 in Egs. (23); then x5 and X6

2
should satisfy the differential equations

X5:X6 b

S

S
z

Hence the minimum time control law for u,_ is described as

I

Z
u = - sgnlx + — XGlx

3 5 218 61

After a tedious calculation, it can be shown that the time tf required
for driving the initial state (x5, x6) = (a, b) to the origin is ex-

pressed as

where & = IB/I_ and a + b|b|/26 > 0.
z

2 2
For the present system, I = 13 slug-ft , I = 20,000 slug~-ft , and
zZ
2
B = 0.1745 rad/s . Hence
I -4 2
5 =2 _ 1,134 x 10 rad/s :

I
Z

-

-3
If the initial values are chosen to be a = 0 and b = 1.2 X 10 = rad/s,

then
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= ————— = 25 5 seconds .

This clearly shows that the outer gimbal cannot control the high~frequency

disturbances about the z axis. One way to improve this is to increase

the value of & by increasing I and/or B, This point needs further in-
vestigation,
D. Examples of Minimum Time Control

The optimal control laws u? and u; are tested by applying them to
different types of disturbances. Since GX and 6 behave similarly to
y
the same type of disturbances, only the disturbances for O are

X
considered.,

If the forcing term about the x axis is described as M , then 6
X X

satisfies the differential equation

For our tests, Mx is chosen to be step input, ramp input, and sinu-
soidal inputs with different frequencies., Figures 2(a) and 2(b) show
the behavior of GX under the 25 ft-1b input and 5t ft-1b ramp input,
respectively. For the examples considered here, the limits of the

gimbal rates are expressed as

\él‘ < 5°/s s
‘éz‘ =5%/s ’
Iés‘ < 20°/s .
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These conditions determine o to be T/36 = 0.0872 rad/s; hence this will
restrict the motion. The performance is satisfactory. The optimal con-
troller performed well against sinusoidal disturbances also. The sine
waves with 10 ft-1b amplitude and 0.5, 2, and 5 c¢c/s are used as dis-
turbances, The results are shown in Figures 3, 4, and 5. Even if the
disturbance is only in GX, the torque for controlling ex disturbs Sy due
to the coupling effect. The maximum deviations of 86 due to the coupling

effect are summarized in Table I.
Table I

MAXIMUM DEVIATION OF ©
y

Maximum Deviation of 6
Case (degrees) Y
— -5
Step Input M = 25 ft-1b 1.0 X 10
X
— -5
Ramp Input M = 5t ft-1b 1.0 X 10
X
— -5
Sinusoidal Input M = 10 sin (TMt) ft-1b 1.6 X 10
X
_ . -5
M = 10 sin (4 mt) ft-1b 1.09 X 10
X
— -5
M = 10 sin (10 1t) ft-1b 1.08 X 10
X

The optimal control laws are also tested for driving the arbitrary

initial states to the origin, The results are shown in Figures 6 and 7.

The optimal laws uT and ug described by Egs. (40) and (41) are sub-

stituted for u1 and u2 in Egs. (23).

If the order of the magnitudes of 61, 6., © and their derivatives

2) 3)
are at most several degrees and several degrees/second, then Egs. (23)
are an acceptable mathematical model for the CMG. The maximum distur-
bances for 8 and 6 (x1 and x2) are considered to be less than

X y

0.00075 rad (=0,043 deg). In the case of astronomical observations,

disturbances of this magnitude will be expected.
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X2 — 1073 rad/second
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FIGURE 6 SUBOPTIMAL TRAJECTORIES (x, -x, plane)
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X, — 1073 rad/second

1.6 I~

FIGURE 7

-1.2

R

SUBOPTIMAL TRAJECTORIES (x5 -Xx, plane)
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The theoretical optimum time is known for each initial state
numbered 1 to 4. The time required to reach the circular region with
-5
radius of 10 radian about the origin of the xl-x3 plane is calculated

for each initial state and shown in Table II.
Table II

COMPARISON OF TIME REQUIREMENT

Time Required to Reach the
Theoretical | Region with Radius of 107° rad

Initial | Optimum Time in X -Xg3 Plane
State (seconds) (seconds)

1 0,702 1.023

2 0.602 0,772

3 0.402 0.420

4 0.502 0.535

The behavior of the gimbals during these controls is a valuable
piece of information. The time histories of the motion of CMG gimbals
for step input, sinusoidal input (0.5 ¢/s) and the arbitrary initial
disturbances that correspond to initial states 2 and 3 in Figures 6 and

7 are shown in Figures 8, 9, and 10,

In conclusion, the tests proved that the optimal control laws u?

and ug are acceptable for small disturbances.

E. Minimum Power Control

In this section, the minimum power control problem is considered.
Because of the same reason mentioned in the minimum time control problem,
the outer gimbal is not used for controlling the z-axis disturbances.

We will only consider the disturbances about the x and y axes,

38




8-v0ZL-VL

€9

(1ndui daig) "ai-l §Z = X ‘STVEWID 40 HOIAVH3IE

spucoas - 1 ‘IWIL

I
oc

o'c

8 IHNOIS

oL

saaibap

39



s/ g°0) -y (32) us QL = x._>_| ‘STIVENIO 40 HOIAVYHIE 6 3HNDId

6-v0ZL-V L
~ £0
—] 20~
Hio

. 1 : | ll‘ r— T— o
s T J | -
spucoas - 3} ‘JWIL 0z ol
€9

e LY
—iZ0
—£0

saalbap

40



0L-v0Z4-91

€ JLVLS TVILINI

(q

SIVAEnIo 40

— 010~

— S0°0-

spuo%as ~ 3 "JWIL

—4 S0'0

— 01’0

pes

HOIAVH3E 0L 3HNOI4

2 31ViS VLLINI

(e)

] oL'o0-

— G0°0-

ot

8y

— S0°0

peJ

41



By using the same notations €15 €y Wl, and W2 defined in Eqs. (27),

Egqs. (23) become

B
\-]
I
1
=
(9]
=
+
=
pod
—)

e
Il

- W
4 {62 * 2] ’

which are exactly the same as Eqgs. (28),

A cost function for the minimum power problem is expressed as

t

1
= 2k|H uu | + X|I x, u_ | + 1| dt

t

o
where k is a weighting factor. If k = 0, the problem is reduced to the
minimum time problem; if k = +», the problem becomes a pure minimum
power problem, The minimum time problem was discussed in the preceding
section. A pure minimum power problem is not of interest here because

the solution is the one that requires an infinite time to control any

disturbance,

The problem considered here is then to minimize both the energy

consumption and the time with a certain weighting factor,

t —

If J3 = j [2k\H uluz‘ 4+ 1] dt is acceptable as an approximation
o

of Jz, then the optimal control laws for this problem are found in the

following way. By treating el and 62 as constants, we can decouple the

differential equations and find the optimal control laws ﬁl and Gz for

ul and u2 independently.
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The optimal control law Gl should transfer the initial state to

the origin by satisfying the relationships

x -le. + W s
2 1 1

(42)
. H
W, =]u, sin x_ + u_ cos x_| T s
1 1 9 2 9] 1
X
lu | =«
1
and by minimizing the cost function
t
1
J. = 2k|H wou_ | + 1| at . (43)
3 12
t
o
The Hamiltonian function for this problem is
H = - e + W, | - 2k|H -1 . 44
Mo ’\2[1 1 |5y, (a1
If u, = to(a > 0), then W1 is given by
. H
W1 = u1 sin x9 + @ cos Xg] T_ 5
X
and hence
A Sin X
u e T Ao 2%oH 2w+ |u 1
= - — CcO0S X_ - —_— u -
M¥a T %1 MU T 9 2k I 1 1
X

Therefore the optimum Gl that maximizes H is described as

u, = = sgn (xz) + sgn (sin xg){sgn (lxz sin X9 - ZEQIX) + l}/Z
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This expression shows that El is a bang-bang type and has a dead zone.

Figure 11 illustrates El vs. (Az sin xg/ZEQI ).
x

cl

+1

>\2 sin xg

2k ol
X

TA-7204-11

FIGURE 11 ILLUSTRATION OF U,

The width of the dead band is a function of the weighting factor
k. If k is small, which corresponds to near time optimal, the dead
band becomes narrow; the dead band becomes wider as %k increases.
Roughly speaking, the minimum power control law El can be obtained by

adding a dead zone to the switching curve for the minimum time control,

A similar argument is true for 32 and is expressed as
U = - i ‘ i - 2kel |+ 1;/2 .
u, & sgn (x4) sgn (31n xg)lsgn (Ik4 sin xg y) }/

F. Effects of Time Delay

For the CMG system considered here, a differential equation with
time delay--or, more accurately, a differential-difference equation--

may describe the system more realistically than an ordinary differential
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equation, This is particularly true if the significant time delays
exist in both the sensors and the control actuators, The former delay
exists in the feedback loop of the system, and the latter delays exist

in the control function.

It is the objective of this research to obtain a practical approxi-
mate solution rather than impractical exact solution. Hence the sub-
optimal feedback control laws are found by using simplified equations
of motion, As a result, the effect of time delays are neglected

altogether,

G. Reduction of Model through Polar Coordinates

and Another Approach to Time-Optimal Control

The ten states of the optimal control problem formulated in Section
II1I-B will now be transformed to other states using certain polar-
coordinate and other transformations, The objective of optimization
will be to drive certain states to zero in minimum time although the
approach that follows could just as easily be applied to fuel optimiza-
tion or a weighted combination of time and fuel., Beginning with the

state dynamics equations (23), we define new coordinates by:

I I
X b'S
= — = - 45
Y171 M Yo T H T2 (45)
I I
y Yy
= = = == 46
Y3 51 3 Y47 H *a (46)
I I
= ‘—Z‘ X = ‘—Z x (47)
Y5 "1 s Y6 T H e
= si + 0s 48
y7 x7 in x9 X8 c x9 (48)
= - S + sin 49
y8 x7 co X9 X8 %q (49)
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= = . 50

Vg = ¥ Y10 ¥ F10 50

Thus (y7, yS) is the vector (x7, x8) rotated counterclockwise through

an angle Xy - /2, and the dimensions of y7 and y8 are in radians,

Using the data for I , I , and I given after Eq. (20) gives the dimen-
x’ 'y z

2
sions of yl, y3, and y5 as rad:second/ft . Next, we define new controls

v_ by

V1o Vo

v. = u sin x + u_ cos x 51
1 2 9 (1)

= u, CcOs 4+ u_ sin x . 52

v 1 x 2 9 (52)

Here again, (vl, v2) is (ul, u2) rotated through Xg = /2, and the dimen-

sions of v1 and v2 are also in rad/second,

Now the state dynamics Egs. (23) become
vy, =V (53)

Vo =Y, .5, -V (54)

Vg =Y, (55)
oo - 6
Y4 Y1097 7 V2 (56)
Vo=, (57)

. I
y.=xu + xu_ + =u
6 71 8 2 H 3

I
= v, + v + —u 58
Y2V1 T Y82 T H U3 (58)
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y_ =%_sin x_+ x_ cos x_ + (x cos Xx_ - X_ sin x )k
7 9 8 9 7 9 8 9/ 9

= sin + u_ cos -
ul 1 X9 2 X9 y y

8" 10
v - 59
Y17 Y8%10 59
98 = —k7 cos x + ks sin xg + (x7 sin g + xg COS xg)kg
= - S + in -+
u, cos x, + u, sin x, +y. y, o
— 60
v, + Y10 (60)
co_ 61
Y9 = Y10 6L
S ) 62
Yi0 7 Y3 62)

Equations (54), (56), (59), and (60) show that the problem is
"uncontrollable' in the sense that Yys vees Yg (and hence Xio v x8)

cannot all be driven to zero by the controls ul and u2.

Notice also that now the equations no longer involve complicated
terms such as sin y9 and cos yg, and that they are quadratic, In fact,
since it is not desired to drive y9 to zero, and y9 now no longer
appears on the right-hand side, it may be eliminated in finding optimal
controls, However, it must be remembered that Y is needed to calculate
the original variable Ko e X8 in terms of yl, cae, y8 once an optimal

control is determined using the transformed system.

Next, we introduce polar coordinates by the relations:

y. = p cos © y_ =1 cos © (63)
1 2
Vg = p sin @ Y, =T sin © (64)
= s O = s sin © . (65)
y, = s co Vg ,
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Thus, we have

-1 4

® = tan g
I x
X 2
1 %

- y

=t

P an r—
x 1

Using Eqs. (63), (64), and (65), we can convert Egs.

(62) above to equ

Y10? and control variables Vs Vg YUgs by proceeding as follows:
p cos ® - pp sin ¢ = r cos @
p cos ¢ + pp cos @ = r sin @
+ cos @ - @ sin © = VoS Sin 0 - v,
* sin @ + ® cos @ = ¥ o8 €08 0 - v,
§ cos 0 - 80 sin 0 = LS PN sin ©

wne

Simplifying, we o

p =

pp =
I‘@ =
S(.j =

It is noticed tha

ations in the state variables ®, ¢, o, r, p, s, ¥

sin 0 + s0 cos ©

It

vz + Sle cos O
btain
r cos @ - )
—vl cos @ - v, sin ® + leS sin (o0 - @)
v, cos 0 +v_sin O
1 2
r sin @ - @)
Y08 cos (c - ®) - v, cos ® + v, sin ®

—vl sin 0 + v2 cos O + sylO

t one can let

48

(53) through

9)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)




\lj:@—(p—"ﬂ (78)
W= vy cos @ - v, sin @ (79)
W, =V sin ® - v, cos ® 5 (80)

which enables further simplification. Note that Eqs. (79) and (80)

merely rotate the control vector (ul, u2) [which has already been rotated

once to form (Vl’ v2)] to form still another control vector (Wl’ w2).
One then obtains
v =-w cos ® + w_ sin @ (81)
1 1 2
v =-w sin ® - w_cos ©® (82)
2 1 2
p=rcos (83)
ro=w. + s sin (c ~ @ . 84
I vl ylO sin ( ) (84)
Using Eqs. (81), (82), and (74), one obtains
S = —wl(cos ® cos 0 + sin @ sin o) - wz(cos ® sin 0 - sin @ cos 0)
= —Wl cos (0 - ®) - w2 sin (o - ®) . (85)

1t now becomes clear that o and ® can be replaced by § and T, where § 1is

as in Eg. (78) and
NM=0-8-m s (86)

(the T appears here for a special reason, as will be explained later),

This leads to the following:

I.j) = =1 COS lif (87)
ro= oW, - s sin 88

1" Y10 il (88)
§ = W, sin T + Wy cos N (89)

The T appears here because @ - @ = T in the terminal phase of control
using our approach in the Appendix; i.e., the velocity vector is opposite
to the position vector near the origin in 9X - Gy space,
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y_ =y (90)

5 76
&6 = Lu3 + x7ul + x8u2
= Iug + (X7’X8) ' (ul’uZ)
= Lug + (y7’y8) ) (Vl’vz) ’

where L = I/H. The last line follows from the fact that both the states
and controls here have been rotated through the same angle x9 - /2.
But from Egs. (74) and (65), we also note that
S8 = s(v cos 0 + v_ sin 0)
1 2
B (y7’y8> + (vy5v,)

Thus, we have
y. = Lu, + sS (91)
or, in other terms,

vy = Lu_ + s(w sin | + w_ cos ) . 91’

Ve 3 5 N ) N (917)

Continuing for the remaining states, we have

y. .S w

10 2 r
VP =0 -~ ¢ = cos | + — + = sin { (92)
r r P
v. s8in 0 - v_ cos O
N=6-0=- L 2 + - 2 cos M
= S Yi0 " Y10 ¥
v, sin 86 - v2 cos B
- s
X < n) N W) sin T + w, cos il W, o)
= - [035] -
Y10 r s r ?

after simplifying by using Egs. (81), (82), and (86).
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Finally, we still have

v 94
y Y10 (94)

5 = . 95
Y10 = Y3 (95)

The reason for choosing N =0 -0 - T above is that T remains equal to

0 and r remains equal to s when
(1) N =0 and r = s prior to any 8 or 8 disturbances and
X y

(2) There are negligible external disturbances on the ©
z

axis of the space vehicle,
Prior to any 8 or 8 disturbances, we have the following situation:
x

(1) The initial conditions 8 =6 = 0 imply that
X y

(2) s = 0 since no control torques are being developed and
s is the magnitude of the vector (61, 62), which repre-

sents angular displacements at the two inner gimbals,

(3) Since both vectors (6 , § ) and (91, 92) are of zero
S y
length, their angles ®, o, and thus 1] are all am-
biguous; thus one may arbitrarily assign 7 the value

0 initially.

Once disturbances occur on the GX and ey axes, the magnitude r of
the vector (éx, 6 ) assumes a positive value, and @ assumes a well-
defined value. But the instant this happens, the vector (61, 62) is
displaced from (0, 0) also, leading to a well-defined value of 0 and a
positive value of s. The important fact, however, is that (91’ 62) is
displaced in such a way that T and r - s remain equal to zero when they
are 0 initially. To demonstrate this fact, let 7| = r - s = 0O in Egs.

(87)-(95). This leads to
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2
'n: 1 -1 —_
le( ) r

w

! 2 + I sin v+
= - 1
v r P le
r=w
1
5 =w
p = -r cos |
Y9 %0 Y10~

£

2

r

0

(96)

(97)

(98)

(99)

(100)

(101)

Since it is now assumed there are no z-axis external disturbances, to

maintain =
W Yg =Yg

so that

where K = ~1/2L.

(26).

Equation (103) yields the same value for u3

= 0, we must counteract the effect of s$ in Eq. (91)

(102)

(103)

as Eq.

We assume that this counter torque is physically achievable with

negligible time delay compared to the damped oscillation periods of the

order of about 1 second for the differential equation system (97),

and (100) combined with the feedback control law of Table A-1,

Appendix, as observed in Figures 15 and 17.

From Egs. (96),
be maintained when 1| = 0, and r = s initiall

(102), and (103) imply
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(98), and (99), it follows that T = 0, r

Fur thermore, Eqgs.

(98),

in the

= s will

(101),




Ks =Kr =y + C R (104)

where C = C(t), and depends upon external forces acting on the z axis
of the space vehicle, which leads to an additional reaction torque for
the control u, different from the value given by Eq. (103). C(t) is
the time integral of any external disturbance torques on the z axis.
Assuming that these disturbance torques are small compared with the
torque ug produced by Eq. (102) to keep the space vehicle fixed about
the ez axis, we can set C = O, Combining Eq. (104) with Egs. (97)

through (100), we obtain

S =1 =W 105

T 1 ( )

P = -r cos i (106)
w

. 2 r 2

y = — + — sin ¥ + Kr . (107)
r p

These are the equations of the reduced problem solved in the Appendix.

We will now show what happens to s and T} when p, r, and § have

been driven to O (i.e., if the five-state problem of the Appendix is

solved) without requiring that r = s and T} = 0.

From Egs. (87), (88), and (92), we see that once p, r, and § are O,

then they are maintained at 0 by keeping the controls w1 and w2 equal to
W, = s sin 108
Yo Ll (108)

W= —ylos cos T . (109)
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Substituting this in Eq. (93), we see that

h X < . Y108 . ylos cos T) ;
= - — COS - =
le T

S r

Actually there is some degeneracy in this formula as r — 0, but
clearly in any practical situation r is never really 0; thus T is in
fact 0, since the terms s/r cos T cancel one another when w2 is main-

tained at the value Y105 O 1.

Substituting in Eq. (89), we see that

s = Y10° sin T cos T} - ¥oS cos NsinT =0

Hence s can never be driven to zero once r, p, and | are O, The physical
interpretation of this is that one cannot drive the gimbal deviations

6. and 62 to zero once one is finished with driving the deviations 6 ,

8,90, 6 P 6 , and 8 to zero. Theoretically, simultaneous control of
y z X y z

él’ éz and 53 to drive r, p, s, y5, and y6 to zero is possible by taking
advantage of the higher order terms that were neglected to arrive at
Eqs. (19). However, because of the fact that such control would be
based on using high~order terms involving 91 and 62 in the range

‘Gil < 0.07 radian, it is expected to be too inefficient; i.e., a great
deal of oscillating back and forth around the origin in r-p space would
be needed while s is slowly being driven to zero. To justify this
claim, consider the assumptions regarding the smallness of 61 and 92

that were made before Egqs. (12), Now, if one backs up a step from that

stage, one can write

T, = —H(ez cos 6 + 6, sin 6, cos 92) (110)
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T =H 5 - i

cos 6, (el §, sin 92) (111)
T =H sin 62 (62 cos 61 + 63 sin Gl cos 62)
+ H sin 61 cos 92 (6

L - 8, sin ez) + 18,

1l

H ocos 8, (sin 8 & + sin 8, ez) + I8, (112)

in place of Egs. (19). These clearly reduce to the latter when 61 and
92 are small, The result of using the more exact equations (110), (111),
and (112) is as follows (we omit the details of derivation): Equations

(54), (56), (59), and (60) are to be replaced by

’ = — CcCOSs 9
Yo = Y108 V1 1
= - - s 9
Y4 Y107 7 Vo €9° 1
v = cos cos -
Y7 =Y 9, ) = Y1078

y_ = V,_ cOS 61 cos 82 +y

8 2 y7

10
Now &7 and 98 differ from —&2 and —&4 to a degree dependent upon the
size of §_ and 62. Hence it becomes technically possible to control

separately from but as — 0 [hence
(v, ¥v,) sep y v ¥g)s v, ¥g) ¥
(6., 6_) = 0] this difference diminishes as the square of 62, since

2

cos 92 ~ 1 - 62/2. It can be easily checked that this implies infinite
time to drive 91 and 92 to zero, Thus driving both the vehicle angular
velocities and the gimbal deviations to zero does not appear practically

feasible.
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As was shown above, when 1| = 0, r = s, and y5 =y _ = 0, equations

6
are obtained for which a reasonable suboptimal control law, a control

law for the full eight-state problem consisting of Egs. (87)-(93), and
(95) is derivable, from which, in turn, one can control the original
ten-state problem. This is achieved as follows: First, a feedback
control law driving the first four states yl, ey y4 (hence the

original GX, 6 , 6, éy) to zero in close to minimum time is obtained,

as described in the Appendix. This control law is then heuristically
extended to the case with the states y7 and y8 included (although not
being driven to zero), as shown in the Appendix. Then this can be com-
bined with the well-known bang-bang time-optimal control 1aw* for driving
the states y5 and y6 to zero in the two-dimensional "regulator" problem
whose state dynamics are given by Egs. (57) and (58), treating all but
ys, y6, and u3 as external disturbances. The above procedure is tanta-
mount to decoupling the original ten-state problem into the two inde-
pendent time-optimal control problems obtained by using only the eight

y

states yl, cees ¥ y in one and the states y5 and y6 in the

4’ 777 "t Y10

other, This decoupling is justified with respect to the effect of the
two~state problem upon the eight-state problem because the states y5
and y6 do not enter in the equations of the other states. However, the
effect of the eight~state problem upon the two-state problem above is

guite strong, In Eg. (91) the term (y7, y8) c (v V2) is bounded by

lJ
s X 0,0872 = 0,006, since ‘sl = yi + yz < 0,07, based on maximum expected
1st and 2nd gimbal deviations of 0,05 rad = 3°, in accordance with
Section IV-D, while the term Lu3 in Eq. (91) takes on the values

£13/1000 0.1745 = 0,002, using the data given after Eq. (15) in Sections
II-B and IV-C. Thus the ''disturbance' term in Eq. (91) may override the

control torque term and prevent driving y5 = 6 and y6 = é to zero
z z

%
See Ref. 3.
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using the outer gimbal under worst-case deviations of the inner gimbals

(®

1 62) considered in this report. For larger outer gimbal and for
smaller expected deviations of 91 and 62, however, the decoupling would
be justified with respect to the effect of s upon &6. The control law
derived here on the basis of decoupling has been tested so far only on

a reduced version of the eight-state problem having only the five states

< éx’ ey, Gy, and és. The results for this reduced problem are shown
in Figures 12-17, Further testing using the entire decoupled ten~state
problem would be required to justify the above approach satisfactorily.
The scales for p, z, and z, in Figures 12-17 are in units of rad-second/
ftz, and for r the scale is in rad/ftz. Using the values of IX and Iy
after Eq. (20), and the value of H after Eq. (15), and referring to Eqgs.
(45)-(47), these scales should be divided by 40 to obtain the length of
the vector (GX, By) and its derivative in radians and rad/second. Thus
the maximum value of 0,05 for p in Figures 12 and 13 corresponds to a
maximum deviation of 0,00125 rad for the vector (GX, ey), which corre-

sponds approximately to the maximum deviation of 0,00075 rad assumed

for 8 and 8 in Section IV-D,
x y
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FIGURE 12 OPTIMAL TRAJECTORIES IN p-r-yy SPACE PROJECTED
ONTO THE p-r PLANE
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V CONCLUSION

A theoretical study has been made for a single three-gimbaled con-
trol moment gyro. In order to obtain a feasible feedback control law,
the equations of motion were simplified, The suboptimal control de-~
rived for the simplified equations performed very well for the small
disturbances. For testing purposes, the feedback suboptimal control

law for minimum time was applied to several different cases.

It was found that the outer gimbal with the present configuration
is not suitable for controlling the disturbances about the z axis. How-
ever, the outer gimbal is necessary in the present form to permit ade-

quate x and y axis control,

The optimal control law that minimizes both time and power with a
weighting factor was constructed by adding a dead zone to the time-
optimal switching curves. The width of the dead band is a function of

the weighting factor.

The time-optimal control problem presented in Section IV-G is
considered from a different point of view. The time-optimal control
laws are derived in a heuristic manner and the simplicity of the re-

sulting control laws is the significance of this approach.

Since this report is the result of the initial phase study, many

improvements and detailed investigation in some parts are required,
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APPENDIX

DERIVATION OF FEEDBACK CONTROL FOR THREE-DIMENSIONAL SYSTEM

A feedback control for the reduced system of equations (105)-(107)
will be described here, It will then be shown how this control law ex-
tends to the case of Egs. (87)-(95) when it is assumed, just as for Egs.
(105)-(107), that no external disturbances to Vs and yg occur, i.e.,
when Egs. (102) and (103) can be assumed. Hence, as discussed at the
end of Section IV-G, a control law for the original problem, as formu-
lated by Egs. (53)~(62), will be obtainable by simple transformation of
coordinates and superposition of the two control laws of the decoupled

systems,

Returning to the problem of Egs., (105)-(107), let us write down

the conditions of the maximum principle and the adjoint equation not

for this problem but for a problem one step back of this in our deriva-
tion, namely, the one given by returning from polar to rectangular co-

1 %3

and (22, 24) and | as ® - 0 - 1, This will lead to equations of the

ordinates; i.e., interpret (p, 0) and (r, @) again as vectors (z

form

> pa— A—

Z Z ( l)
2 = Kt + ) - (A—'2 )
Z Z Z Z \

. = A'-

Z Z ( 3)
zZ Z + =z Z \Y%
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in four state variables =z if vl and v2 are related to wl and

1o e

w2 as in Egs. (79) and (80). Because of the assumptions made in arriving

at Eqs. (105)-(107), =z z are not exactly equal to yl, ceey ¥

17 e %y
unless the constant C in Eq. (104) is 0, etc. However, under those

4}

assumptions, Zis e 24 represent the original gimbal deviations and
gimbal rates multiplied by certain constant factors. The reason for
going back to a four-state rectangular problem is computational con-
venience; this problem was synthesized by the maximum principle on a
time~sharing teletype computer and it was found that better accuracy and
speed with simple Euler integration could be achieved by avoiding the
highly nonlinear terms in Egs. (105)-(107) compared with the simpler
cubic terms in Egs. (A~2) and (A-4), Furthermore, since the two prob-
lems are equivalent, the four-state problem needed to have only three

of its adjoint variables swept over suitable ranges in using the maximum
principle instead of four, as would be necessary for a general problem
of dimension 4, and therefore the simulation effort was not actually

increased by elevating the state dimension from three to four.

The adjoint equations are

L = 0 A=5
>\1 ( )
A= -\ 2K A +K32+ 2) (A-6)
o T ™M Zo% 4o Zg T2y 0y

. =0 A-7
>\3 ( )
A A K 2+32) + 2K (A-8
K4 = Ay 22 24 kz zzz4>\4 . -8)

The Hamiltonian, to be maximized, is

68



M=z 4z + o k22 + 22 k(2> + 2)
- MH 3%3 olB\%a T 247 T V| T M B E T 7% T Yy :

(A-9)
The maximum is achieved at
-,
Az (A-10)
v e P e —_
1 2 . AZ
2 4
A
4 (A-11)
v e ————— -
2 xz " xz
2 4

2 2 2
when using the circular control region v1 + v2 = o, or at
v, = —-¢ sign <K2)
v_ = ¢ sign (Az)

2‘ < . The latter

was used in deriving Figures 14-17, while the former was used to obtain

when using the square control region {wl‘ = o, lw

Figures 12 and 13, Which of these two is the easiest to incorporate

into a usable feedback control law remains to be determined. Here ¢ was

taken to be 0.0872, the magnitude of the original control vector (ul) u2).
The boundary conditions are
A, (0) free A, (T) free s i=1, 2, 3, 4 s
i i
where T is the final time, for any fixed initial point Zl(o)’ ceey
24(0). The terminal point is always to be Zl(T) = ... 24(T) = 0, since

we want to drive r and p to zero in the problem of Egs. (105)-(107).

Computing backward trajectories from the origin in =z z space

17t 2y
for different starting values for the A 's resulted in curves in p-r
i

space as shown in Figures 12 and 13. On the basis of these figures,
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and the plotted values of § along the curves in these figures, a feed-
back control was heuristically arrived at, as given in Table A-1, Note

that the switching value § = *7/6 instead of #1/2 was found to work

Table A-1

A PROVISIONAL SUBOPTIMAL FEEDBACK CONTROL LAW

(no dead bands)

C
ase wl W,
2
p=r /20 3
1. -o -Kr
§ =0
2
p< r /2v
2, e -0 sgn (§)
¥ % 0 g ¥
2
p>r /2¢ 3
3. & -Kr
§ =0
2
p=r /2¢
4, - - n
lwl > /2 sgn (})
2
p>r /2«
5. o -
o< ¥ < mr2 o sen ()
2
p =r /2¢
6. 0< < /2 -0 cos { o sgn (V)

more efficiently and was used in the flow chart in Figure A-1., This
control law, modified as in Figure A-1 was fed back into Egs. (A-1)-
(A-4) to see how well it represents the time-optimal policy for these
equations. The results were reasonably good, and are shown for two
starting points in zl—z4 space [hence in p-r-{y space for Egs. (105)-
(107)], in Figures 14-17. For computational convenience, the feedback
law used to derive Figures 14-17 was the bang-bang control law of Figure

A-1, which arose from using the square control region |w1\ S Iwzl s o,
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20 1
;YES NO
Wl < i
€
2 -—>€
P "2a" 5
+YES NO YES
CASE 1 NO
m m
>— >
Wiz Wi > Wi <e,
YES NO YES NO YES NO
CASE 4 CASE 6 case 4| | Yl <eg, CASE 1 CASE 2
YES NO
CASE 3 CASE 5

* Cases refer to Table A-1.

TA-7204-18

FIGURE A-1 FLOW CHART USED FOR OBTAINING FIGURES 14-17
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whereas Figures 12 and 13 were obtained using the circular control
2
region given by w1 + w2

greater than the feedback time in Figure 15. Actually, the shape of

2
< @ ; this explains the "optimal" time being

the feedback control region is rather arbitrary, since the controls wl
and w,, are not "physical" torques but rather result from rotation of

the physical torque vector (él, éz) through a certain angle, and it is
the latter vector that is physically constrained. For this reason, it
seems best to use the circular region, since then (él’ éz) would also

be constrained to a circle.

The system (105)-(107) was obtained from Eqs. (87)-(95) by assuming
r = s and 7| = 0 and no external disturbances on the z axis. In the more
general case where r # s and m # 0, and there may be z-axis external
disturbances there are more state variables to be considered., For this
case, we have Egs. (87), (88), (89), (92), (93), (95) for the states
p, r, ¥, M, s, le' The control law of Table A-1 can be extended to
this case heuristically by realizing that the term Kr2 in Eq. (107) is

really y s/r cos Tl in Eq. (92), and by noting that the states y s

)

10 10’
T are not being driven to zero. Thus the feedback control to drive p,
r to zero should have w2 = —le s cos T to keep @ = 0 when ¥ reaches 0
in Eq. (92), instead of having w, = —Krs in Eq. (107) as is stated in
Case 1 of Table A-1, Treating the other cases of Table A-1 similarly

results in Table A-2 for this more general problem,

This policy assumes that the term w1 = ¢ can exceed the maximum
magnitude y s of the "disturbance' term in Eq. (88), and therefore, p
and r are controllable through v, As we pointed out in Section IV-G,
this may not be possible, using the gimbal sizes and their maximum de~
viations assumed in this report. Also, so far it has been assumed that
z—-axis disturbance torques are negligible compared with the reaction

torque u3 that results in Eq. (102) to keep 96 =1 /H é from being
Z Z
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Table A-2

SUGGESTED FEEDBACK CONTROL FOR USE WITH

EQS. (87), (88), AND (92) WHEN r # s AND | # 0

Case wl ‘ WZ
1. i i 22/2Q ~-& Y05 cos Ll
2. 5 ; 32/2d - -u sgn |
3. 5 Z 22/2@ o ¥ S cos n
a. IITI jﬁ;’ o —o sgn ()
MR EA R St
6. g : $2£2§>2 -o cos ¢ +-ylos sin T | & sgn ()

affected by motion of the inner gimbals., When there are larger z-axis
disturbances, the assumptions leading to Egs. (105)-(107) are not valid,
and the control law of Table A-2 needs further testing under these

conditions.
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